An alternative pathway for ureide usage in legumes: enzymatic formation of a ureidoglycolate adduct in Cicer arietinum and Phaseolus vulgaris.
نویسندگان
چکیده
Ureidoglycolate is an intermediate in the degradation of the ureides, allantoin and allantoate, found in many organisms. In some leguminous plant species these compounds are used to transport recently fixed nitrogen in the root nodules to the aerial parts of the plant. In the present study, it was demonstrated that purified ureidoglycolases from chickpea (Cicer arietinum) and French bean (Phaseolus vulgaris) do not produce glyoxylate, and can use phenylhydrazine as a substrate with K(m) values of 4.0 mM and 8.5 mM, respectively. Furthermore, these enzymes catalyse the transfer of the ureidoglycolyl group to phenylhydrazine to produce ureidoglycolyl phenylhydrazide, which degrades non-enzymatically to glyoxylate phenylhydrazone and urea. This supports their former classification as ureidoglycolate urea-lyases. The enzymatic reaction catalysed by the characterized ureidoglycolases uncovered here can be viewed as a novel type of phenylhydrazine ureidoglycolyl transferase. The implications of these findings for ureide metabolism in legume nitrogen metabolism are discussed.
منابع مشابه
LegumeIP 2.0 - a platform for the study of gene function and genome evolution in legumes
The LegumeIP 2.0 database hosts large-scale genomics and transcriptomics data and provides integrative bioinformatics tools for the study of gene function and evolution in legumes. Our recent updates in LegumeIP 2.0 include gene and protein sequences, gene models and annotations, syntenic regions, protein families and phylogenetic trees for six legume species: Medicago truncatula, Glycine max (...
متن کاملComparative sequence analysis of nitrogen fixation-related genes in six legumes
Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for ...
متن کاملIsolation of Biocontrol (Bacterial) Agents from Chickpea (Cicer arietinum linnaeus)
Gram or Chickpea (Cicer arietinum Linnaeus), a member of family Fabaceae, is an ancient leguminous crop which is self pollinated, diploid annual (2N=16 chromosomes) grown since 7000BC, in different area of the world but major cultivation is concentrated in semi-arid environments of different areas of the world. It is ranked 3 rd after common bean (Phaseolus vulgaris L.) and pea (Pisum sativum) ...
متن کاملIdentification of rhizobial strains nodulating Egyptian grain legumes.
Fifty four bacterial strains were isolated from root nodules of the grain legumes Cicer arietinum, Lens esculentus, Phaseolus vulgaris, Pisum sativum, and Vicia faba grown in cultivated lands of Beni-Suef Governorate (Egypt). Repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) clustered the strains into 15 REP-PCR groups. The nearly complete sequence of the 16S rRNA gene fro...
متن کاملLate Embryogenesis Abundant (LEA) proteins in legumes
Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2011